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ABSTRACT

The objective of this research is to develop a nonlinear

regulator for an adaptive control system using backpropagating

neural networks (BNN' s) in conjunction with a linear quadratic

regulator (LQR). The basic concepts of adaptive control and

the structure of neural networks are discussed. These

concepts are integrated and the nonlinear regulator is

derived. Simulation is conducted on a representative

nonlinear system with both the LQR and the nonlinear

regulator. Training of the regulator and its performance

under varying BNN parameter values are examined.

The simulation results show that the nonlinear regulator

with BNN's exhibits superior performance compared to the LQR

when the nonlinearities are large. The optimization of

regulator performance with regard to BNN parameter values is

discussed.

Further research is required in order to determine the

general applicability of this regulator and to develop more

specific guidelines for BNN parameters. Accesion For
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I. INTRODUCTION

A. OBJECTIVE

The objective of this thesis is to develop a nonlinear

regulator for an adaptive control system using backpropagating

neural networks (BNN's) in conjunction with a linear quadratic

regulator (LQR). Discrete time models are used to represent

the systems for simulation and analysis.

B. BUIC CONCEPTS OF ADAPTIVE CONTROL

There are inherent nonlinearities in most control systems

due to elements such as environmental changes, minor system

component failures, random time-varying parameters, and hard

limits caused by physical constraints. These nonlinearities

may be handled by an optimal control design if it is

sufficiently robust, but with large uncertainties the

controller has to sacrifice performance in favor of robustness

and this might be unsatisfactory.

One method of handling these nonlinearities is to use an

adaptive control system. An adaptive control system is one

which continuously and automatically measures the dynamic

characteristics of the plant, compares them with the desired

attributes, and uses the difference to vary adjustable system

parameters so that optimal performance can be maintained

regardless of the nonlinearities encountered [Ref. 1: p. 792].
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1. Performance Indexes

The basis of adaptive control rests on the premise that

there is some performance of the system which is optimal.

Optimal performance is defined by specifying a performance

index to measure the closeness of the controlled system to its

goal. There is an infinite number of possibilities in the

choice of a performance index. The choice of a particular

index depends on the system and the desired results. In most

cases the choice of index involves a compromise of minimizing

the system costs while maximizing the system performance.

The major drawback of performance indexes is while they

specify the cost of system operation they do not give

information about the transient response of the system [Ref.

1: p.793]. A system that operates optimally according to the

performance index may have undesirable transient

characteristics. The transient response of the system must be

analyzed to validate the choice of weighting matrices used in

the index.

2. Adaptive Control Systems

An adaptive control system may include the following three

functions:

"• Classification of the dynamic characteristics of the

plant.

"* Decision making based on the classification.of the plant.

"* Modification based upon the decisions made.
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If the plant parameters are not exactly correct, then the

initial classification, decision, and modification procedures

will be insufficient to optimize the performance index. It is

then necessary to continuously carry out these procedures

throughout the period of operation. This constant redesign of

the system identifies an adaptive control system (Ref. 1:

p.793-794].

C. NEURAL NETWORKS IN ADAPTIVE CONTROL

While control theory for linear time-invariant (LTI)

systems is a relatively mature field, nonlinear control

systems generally must be designed on a system-to-system

basis. Neural networks, with their inherent adaptability,

have the potential for wide application in nonlinear control

systems. The ability of a neural network to be trained

suggests that a neural network may be able to successfully

control nonlinear systems which have poor performance when

regulated by linear time-invariant controllers. This thesis

will investigate the use of aeural networks in conjunction

with LTI control methods to construct a nonlinear regulator

[Ref. 2: p.410]. This regulator will be implemented on a

system that may be modeled as LTI with an added nonlinearity

which either makes control by LTI methods inefficient or

unstable.

Two neural networks shall be used in the formulation of

the regulator: one in parallel with the estimated plant

3



parameters to generate a better state vector estimate and one

in parallel with the linear control to produce an improved

control input to the system. Chapter II discusses a general

neural network structure and the derivation of the nonlinear

regulator. The performance of the regulator on a particular

system is presented in Chapter III and conclusions are given

in Chapter IV.
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II. BNN NONLINEAR ADAPTIVE CONTROL

A. BASIC CONCEPTS OF NEURAL NETWORKS

Artificial neural networks are made up of elements which

operate in a manner analogous to the most simple functions of

biological neurons. These elements are linked in a fashion

which may be similar to the connections within the human

brain. Whether or not artificial neural networks actually are

representative of the construction of the brain, they do show

characteristics which are reminiscent of the human brain. An

artificial neural network may be trained, it can recognize

patterns, and it may apply its learning from past lessons to

new data. These traits are quite limited, however they lend

themselves to a wide field of applications.

1. The Artificial Neuron

The artificial neuron is meant to mimic the first-

order characteristics of the biological neuron. A set of

inputs is applied, each input representing the output of

another neuron. Each input is multiplied by a corresponding

linkweight and all of the weighted inputs are summed. This

sum is the activation level of the neuron. Figure 1 shows a

detailed representation of a single neuron.

In Figure 1 the inputs are labeled x,, x2 ,...,.

These inputs are defined collectively as the (n x 1) column

5



vector XM-. Each input is
XM- 1 a.

multiplied by its

corresponding linkweight a1,

a,,...,a. (row vector a, size M

(I x N)) and applied to the

summation node [Ref. 3:

pp.12-14]. The summation
Figure 1. A Neuron

node produces a scalar output

zM which may be stated in vector notation:

Z=a 4-. (2-1)

The output of the summation node, z/', is further

processed by an activation function f, to produce the neuron's

output signal xe:

Xy = f (z1") (2-2)

There are numerous activation functions such as a

simple threshold, a hard-limited linear function, the

hyperbolic tangent, and the sigmoid. These functions are

shown in Figure 2. The main purpose of the activation

function is to serve as a nonlinear gain so that each neuron

maps a wide range of inputs into a bounded output.

2. Single Layer Neural Networks

By themselves, neurons have limited capabilities,

unless they are grouped together in layered networks. Figure

6
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Figure 2. Various Activation Functions

3 shows a single layer neural network with its inputs on the

far left of the figure and the outputs on the right. The

single layer neural network only performs the vector

multiplication; there is no activation function.

The circles on the left of Figure 3 serve only as

distribution points for the inputs; they do not perform any

calculations so they are not neurons. Each element of the

input vector x is applied to each neuron. The linkweights may

be considered as a matrix a with m rows and n columns where m

is the number of outputs and n is the number of inputs. The

number n is one greater than the dimension of the input vector

x due to the bias term. Using equation (2-1), z is the (m x

1) output vector:

7
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Figure 3. Single Layer Neural Network

Z aax. (2-3)

The non-zero bias term is added as an input to each neuron.

This bias input is also multiplied by its own linkweight.

3. Multiple Layer Neural Networks

Neural networks with multiple layers offer greater

computational capabilities than single layer networks. These

networks are formed by cascading a number of single layers

with the outputs of one layer providing the inputs to the next

layer. These middle layers are known as hidden layers.

Figure 4 shows a multiple layer neural network. The key to

providing the extra power of the multiple layer networks is
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Layez 2

Layer 1

ire 4. Mltiple Layered Neural Network

that the activation function is included in the hidden layers

of the network. Otherwise, the multiple layer network could

be modeled by a single layer network which had a linkweight

matrix equal to the product of the individual linkeight

matrices [Ref. 3: p.19]. The output layer usually has the

function f•x) - x, waiving the limits of the activation

function.

4. Training of Neural Netwrks

A network is trained so that a set of inputs will

produce a desired set of outputs. Training is accomplished by

applying an input vector, computing the output vector,

comparing it to the desired vector, and modifying the

linkweights by a predetermined algorithm. As the network is

9



trained, the linkweights will converge to values which will

produce the desired output vector.

There are several methods of training a neural

network, one of which is the backpropagation routine. This is

the algorithm used to train the neural networks used in this

thesis. The next section discusses this technique.

5. Backpropagating Neural Networks

The backpropagating neural network is structured as

shown in Figure 4. The signal flows from input to output. We

assume no connections between the neurons of a layer and no

feedback from any layer to the previous layers.

Backpropagation refers to the method used to adjust the

linkweights throughout the neural netwtork.

The output of a neuron in the last layer (z•M)is used

with a desired output (•4) to produce an error signal (e)M).

This error signal is rrItiplied by the first derivative of the

activation function for that neuron. Mathematically,

S= .f(j)(X-€~ 2-4)

Then 6 is multiplied by the output from the source neuron for

the linkweight which is to be updated and in turn is

multiplied by a scaling factor •, the learning rate. This

results in

10



&M = a8-'xM- (2-5)

and

,-1 aM-,1-.A (2-6)

where

"* a,ý1 is the linkweight from neuron i in the layer M-1 to
neuron j in the output layer M,

"* Ol-1 is the value of 8 for the linkweight aNMI,

"* t+1 denotes the updated linkweight.

The linkweights in the hidden layers cannot be trained

by this process, since there is no available target vector.

Backpropagation trains the hidden layer linkweights by

propagating the output error back through the network,

adjusting the linkweights for each layer. Equations (2-4),

(2-5), and (2-6) are still used for the hidden layers, but the

target vector must be generated differently. The 6 is

calculated for each neuron in the output layer, as in Equation

(2-4). The linkweights feeding the output layer are adjusted

using Equations (2-5) and (2-6). The 6.'1 is propagated back

through the network to generate a value for 6 for each neuron

in the hidden layer. These values are used to adjust the

weights of the preceding hidden layer, all the way back to the

linkweights that act upon the inputs.

This is most easily shown in vector notation. The

vector of 6's for the output layer iq defined as D,., and the

11



set of linkweights for the output layer as the matrix AM.,. To

find DM2, multiply Dm., by the transpose of the matrix Am.,.

Then multiply each component of this vector by the first

derivative of the activation function for the corresponding

neuron in the hidden layer. This yields the vector of 6's (DZ.

2) for the hidden layer. Mathematically,

PM _2 = [DN .1 ANT1I] f [f (lv 1) (2-7)

where .* denotes component-by-component multiplication of

arrays [Ref. 3: pp.51-53].

3. INTEGRATION OF NEURAL NETWORxS AND ADAPTIVE CONTROL

As suggested earlier, the versatility of neural networks

makes them prime candidates for nonlinear controllers. The

vast majority of LTI systems are able to be controlled by

linear quadratic regulators (LQRs). However, the LQR itself

may not exhibit satisfactory performance in the presence of

large uncertainties. That is, inaccuracies in the estimation

of system parameters or nonlinearities in the system may cause

the LQR to lose its optimality. In particular, nonlinear

system dynamics can not be accounted for in LQR design.

The proposal here is to derive a nonlinear adaptive

regulator which uses neural networks to compensate for the

nonlinear dynamics. This regulator will include two

backpropagating neural networks (BNN's): one for modeling and

12



one for control. The modeling BNN is used to find a more

accurate state vector estimate than that found using the given

system parameters. The control BNN modifies the control input

by adding nonlinear terms to the LQR.

1. Linear Quadratic Regulator

The LQR is a state feedback controller which minimizes

a performance index known as the cost function. Consider the

LTI system:

Zt1= AXe+BUt, (2-8)

where r - (x, , .. x)T is the n-dimensional state

vector, 1 - (ul, 'u, ... , u.,)r is the m-dimensional control

vector, and A and B are the system parameters of dimensions (n

x n) and (n x m), respectively. The LQR is a regulator which

minimizes the cost function:

E- .i(XrQzc+uTRut) (2-9)

where Q is an (n x n) symmetric and positive semi-definite

matrix and R is an (m x m) positive definite matrix. The

optimal control u is defined by

ut a -Kzt (2-10)

where

13



K= B TPB+R] -B TPA. (2-11)

K is the (m x n) optimal feedback gain matrix and the (n x n)

matrix P is the solution to the algebraic Riccati equation

[Ref. 4: p.320]:

P - ATPA+Q-APB[BTPB+R]-IBTPA. (2-12)

Obviously, the LQR does not take nonlinear system.

dynamics into consideration, but it does give a good baseline

for comparison to the nonlinear regulator derived in the next

section.

2. Backpropagating Neural Network Designr

The system with the nonlinear regulator is shown in

Figure 5. The modeling and control BNNs are labeled BNNM and

BNNC, respectively. The modeling BNN is connected in parallel

with the estimated plant parameters, labeled A, and B,. The

control BNN is connected in parallel with the LQR, labeled K.

The block labeled D denotes a unit time delay.

The nonlinear plant will be modeled as a linear time-

invariant system with a nonlinearity added:

XC÷I = Azt +But +÷ (2-13)

where v, is the n-dimensional nonlinear function. First, a

linear estimate of the state equation is made:

14



FIgNure 5. Regulator Block Diagram

X = A~• ÷+Eu•" (2-14)

The estimates of the system parameters may be computed by any

number of methods. This linear estimate will deviate from the

actual system output due to the nonlinear system dynamics and

the inaccuracies in parameter estimation.

In order to compute a more accurate estimate of x÷,,

the modeling BNN is used to produce an adjustment to 4÷1. The

modeling BNN has the (m + n)-dimensional input vector (q, x)

and the n-dimensional output vector 6A+,. Therefore, the new

estimate of ,;, is:

15



~ (2-15)

where

=xt.1 g(ut, Z)d. (2-16)

The modeling BNN is trained so that the error between A+, and

2;+1 is minimized.

The optimal feedback gain matrix K is computed from A,

and B, found in equation (2-14) and user-defined weighting

matrices Q and R. The linear control input is computed:

- -Kzr. (2-17)

As discussed earlier, this controller is no longer optimal due

to the nonlinear system dynamics and the parameter

inaccuracies. The control BNN is used in order to optimize

the control input. The control BNN has the n-dimensional

input vector (A) and the m-dimensional output vector 6%. The

control input % is generated by

ut = 7t+6ut (2-18)

where

8au - h(x,). (2-19)

The control BNN is trained so that the control input x;

minimizes the cost function of equation (2-9).

16



3. B3N Training Algoritbms

The following notation is used for both the modeling

and the control BNN:

0 n refers to a particular layer of the network;

* the ith node in the nth layer is designated node(n, i);

0 M is the total number of layers in the network, including
the input and output layers;

* AV, is the number of nodes in the nth layer;

• e4, is the output of the node(n, i) at time t;

* a"u is the linkweight from the node(n, j) to the node(n +
21, 1).

The functional representation of the node(n, i) is found by:

= na'j1x- (2-20)

or

=n an-iza-i (2-21)

where ael is the (NA x N.1) -dimensional linkweight matrix and

Xi = f(Z•e) (2-22)

where xije is the ith element of the vector input to layer n.

The function f(e) is chosen to be the sigmoid function

17



f(x)= (2-23)

1 +e-x

for the hidden layers and

f(x) = x (2-24)

for the output layer. In accord with this notation, the

dimensions N, - m + n and N. - n in the modeling BNN, and X, -

n and NM - m in the control BNN where n and m are the number

of columns in the system matrices A and B, respectively.

a. ModeZIng BWP

In deriving the modeling BNN, the first step is to

determine the error function which will be used for training.

Since the goal is to produce an accurate estimate of x,÷,, the

error function is chosen to minimize the difference between

•+ and ;+,1 :

-". :"1 A(,• - zt.•) 7 (St., - x.t) (2 -25)

The linkweights are updated using a version of the gradient

descent algorithm:

a-... €,i P a (2-26)

18



where AM is a step size parameter which controls the learning

rate of the linkweights. The partial derivative of the cost

function is computed as follows:

aEM a
C+[ (It., - ZC.) T(Ci., -- r-)) Iaaf j aaij

= Jc1- c•):7 (_tt.l -_XCj) (2-27)
aa n

Ot(t-i - Zt1) "a.

where

_ a + . (2-28)
canj 1aa n

Since V+, is independent of the linkweights:

a-tt.1 _ a axe+1
Baij 8aal (2-29)

= .. a g(U,. Ze)

The function g is the mapping function for the layers of the

network described earlier.

Therefore,

-E = (& -- C÷1) 7 a1g(uc, 9C) (2"30)aan• aa n

19



The computation of (ag/aa) is found next [Ref. 2:

p.412]:

0 g(uc, x ) " (2-31)

where

nJ _nl n+1 An-l
Al = f/(z1~)aE, a (2-32)

,k-1

The function f"(x) denotes the first derivative of f(x) at x.

The initial condition on A is

0 i 1.(2-33)
=•.• [o,...,o, ,o,...,o]0 .

Therefore, the linkweight training is accomplished as:

n,= aj, - PN(ti. .- x.) Ai.ei.e (2 -34)

b. Control BNH

Finding the error function for the control BNN is

more involved than for the modeling BNN. If the plant was an

LTI system, the control input t4 which minimizes

EC -• (zx.l Pz*1U R•u•) (2-35)

is given by equations (2-10) through (2-12) [Ref. 2: p.413].

This implies that the LQR generates a control 'input which

minimizes equation (2-35) for each time t. This control input

20



is suboptimal even if the system is LTI. The nonlinearities

in the system make the LQR even less optimal. The control BNN

is connected in parallel with the LQR to adjust for control

errors caused by parameter inaccuracies and nonlinear system

dynamics. Therefore an error function must be chosen which

makes the output of the control BNN equal zero if the plant

parameters are exactly expressed by A, and B, and the

nonlinearities are set equal to zero. Equation (2-35) is a

good choice for the error function at time t, but A,, is not

available at time t. It is replaced by *,, which is found

with the modeling BNN. The error function for the control BNN

is now

, , 1( u2Ru). (2-36)

Tho ''-•eig1- for the control BNN is defined as

V,, in order to ifferentiate it from the modeling BNN

linkweight, a",,. The control linkweights are updated by the

sadient des(_ lt algorithm:

= n• - (2-37)
bP cabf

where Ac is the learning rate parameter.

21



Equation (2-19) defines the nonlinear function for

the control BNN. This is used to calculate the training

algorithm as follows:

c I T uT Ru•) ]

(2-38)

1p*t2l u 7R B"utab?,j abnj

First, (aA+÷l/b) will be derived followed by the derivation of

(au,/ab). Substituting equation (2-15) into (a8+, 1/b) gives:

at.. •,•i.• a••÷a•• .1

ab.ft. 7 - p B z - + x.).(2-39)

Next, equations (2-14) and (2-18) are used:

aB i a - (A e z + , ou t + 8 x t.I )ab?., a i?. ab n -(2-40)

ab,a (A&zr+E.(I~t+8Ud) +8xt,1 )

but 2; and 1 are independent of b, therefore

-3&.1 = a (Beut+8xt+1 ) (2-41)abnj ab,'

Substituting in equations (2-19) and (2-16) results in

a2 B e ah (x ,) ag(u ., ) (2-42)
ab!2 abn, ab!72

22



The second partial derivative in equation (2-42)

is the partial derivative of a function of t; which is itself

dependent upon b, therefore the derivative muse be split as

follows:

alt., _ 8 h(zx ) + ag(u t, x ) au r

(bn * abnj aut ab,-j (2-43)

But the partial derivative of g may be further simplified by:

.3u _ a(te+aut)
a~bl'j abn=j

= 8(u) (2-44)
abn

-a 8(z•)

Substituting equation (2-44) into equation (2-43):

ast1 ,B ah (x,) +ag(u., x.) ah(z,)
abn, B ab,1 a"iaj

abj au ,; a(2-45)

= (B. 8ag(UcXt) 1 ah(xz)
fatC ) aýbZj

Using equation (2-31), (Oh(.)/ab) may be computed in the same

manner as (ag(u&,;)/aa). The (n x m) matrix (ag(t4,A)/atu) is

found by (Ref. 2: p.413]:

ag(u•, z) -- (2-46)

aut 23
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The control linkweight training algorithm may be

summarized as:

n n ag (u t, ) +t R 1-4 7)b ~j,t.1=2b J, C-• I e+ a U€

The training algorithm for both BNNs may be

summarized as follows:

"* observe the state vector A, at time t,

"* update the linkweight matrices a, using equation (2-34),

"* compute the control input % with equations (2-17), (2-18)
and (2-19),

"* calculate the state vector estimate *÷• using equations
(2-14), (2-15), and (2-16),

"* update the linkweight matrices b, using equation (2-47).

This is repeated at each successive time t, as the new state

vector becomes available.
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I11. SIMULATION RESULTS AND DISCUSSION

A. NONLINEAR SYSTEM DESIGN

In order to test the LQR and the nonlinear regulator, a

nonlinear system was required to be modeled. This system was

modeled with a linear part which was then acted upon by a

nonlinear function. The linear portion was artificially

estimated to provide a more realistic case study. The linear

system used as a baseline was first presented as a transfer

function in continuous time, transformed to a state space

representation, and then converted to discrete time.

The chosen transfer function was unstable with poles at

+2.00 and -1.00, a zero at +0.10, and a gain of 10:

Y(s) _ l0(s-0.1) (3 -1)
U(s) (s.l) (s-2) "

The equivalent of this transfer function in state space format

is [Ref. 1: pp.675-677]:

2=[~ 1]y[O (3-2)

= Acy+B u.
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This equation is converted to discrete time using a truncated

infinite series to calculate the state transition matrix and

input matrix [Ref. 4: pp.123-1271 with a sample time of 0.1

seconds. The discrete time equation is:

t 010 0.1055]y 1 001ur '2110 1.1159 1. 0533] (3-3)

- Ay,+Bu=.

Estimated values (A, and B,) were found for the purpose of

illustrating the relative robustness of the LQR and the

nonlinear regulator. These values were found by taking the

members of A and B and calculating values which differed from

the actual numbers by *10-20 percent.

The nonlinear part of the system equation was modeled as

follows:

x,, l, e. + exp y..(3-4)
x2,€. y2, t.,+e(1 exp (y1,,.)

The value e is a control on the level of nonlinearity.

B. LQR SIMULATION RESULTS

The LQR is calculated using A, and B,. The weighting

matrices 0 and R are set at:

and R =1.

26



The solutions to equations (2-11) and (2-12) are:

K - (0.1775 0.5057] and P= 0 0.1060] (3-6)

Figures 6 and 7 illustrate the performance of the LQR to

a unit impulse. Figure 6 shows the system response for e -

0.05. The state variables quickly converge to zero. Figure

7 shows the response to the same input for e - 0.20. It can

be seen that the LQR is not sufficiently robust to cause the

state variables to converge to zero. The plant converges to

a nonzero equilibrium value.

C. NONLINEAR RRGULATOR SIMULATION RESULTS

Both BNN's used here are three-layered neural networks

with 30 nodes in the hidden layer. In the modeling BNN, N, -

m + n - 3, N2 - 30, and N, - n a 2. In the control BNN, N1 -

n - 2, N2 - 30, and N3 - m - 1. The learning rate for both

BNN's was set at 0.05. The initial condition on the

linkweight matrices was to fill them with small random numbers

(normal distribution, standard deviation - 0.1).

Figure 8 plots simulation results for the nonlinear plant

with e - 0.05. The results are quite similar to those of

Figure 6. For this level of nonlinearity, the nonlinear

regulator causes the state variables to converge to zero
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Figure 6. LQR Result for e - 0.05
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Figure 7. LQR Result for e - 0.20 -
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faster than the LQR, but the response is slightly more

oscillatory.

.. .. ... ........i i li il... ..... ...
stat*e vixazba1s

kJ ° " ..... ............. ............ !............ i ............
-0 .2 ... . . .. ............ ............ .............

0 . .. . .

-0 .2 ....... .... ............ ......................................

0 ________.

-... ...... ... ........................ .

0 1 23 a

Time (sec)

Figure 8. Nonlinear Regulator Result for e - 0.05

Figure 9 shows simulation results for the nonlinear plant

with e - 0.20. Comparing these results to those of Figure 7

shows that the nonlinear regulator reduces the state variables

to zero in a case where the LQR is unable to do so. While the

LQR stabilizes the system for relatively large factors of E,

it is of limited utility once the state variables no longer

converge to zero. The state variables converge to zero using

the LQR up to e - 0.18 while the nonlinear regulator continues

to drive the state variables to zero up to e = 0.21. The

performance of the nonlinear regulator is better than the LQR

for e x 0.06.
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Figure 9. Nonlinear Regulator Result for e - 0.20

1. MIN Parameter Variation

The next area of investigation was to vary some of the

parameters of the neural network to examine the effects upon

the regulator. This was accomplished by holding all

parameters constant with the exception of the one in question.

The performance index W is found by summing the absolute

values of the state variables (x,., and x2 ) for the specified

time range. The performance index W was calculated for each

instance, again for a unit impulse over a range of 20 seconds.

One of the major variances in the performance of

neural networks is caused by the number of nodes in the hidden

layer of the network. This number (N2) was varied from 10 to
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40. The results are plotted in Figure 10. The straight line

(without point markers) shows the performance of the LQR with

no neural network. Figure 10 shows that adding more nodes to

the hidden layer improves the performance of the regulator.

However, when e is small, the LQR yields better performance

than the nonlinear regulator with any number of nodes. As e

increases above 0.15, the performance degrades and the number

of nodes has less of an effect. There are limits upon the

number of nodes used. When the regulator was tried with 50

nodes in the hidden layer, the system became unstable.

10.

*10 nodes
* • 20 nod.e

a 30 nodes
x x 40 nodes

0

W

0 0.05 0. 0.15 02 0.25

a - Nonlineaity Coefficient

Figure 10. Variation in W due to Number of Nodes

The learning rate was also varied to determine its

effect upon regulator performance. This step size parameter
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had an effect on W similar to that of varying N2 . Both the

modeling and the control BNN's had their learning rate changed

to the same value. Figure 11 shows the effect of this upon W.

An interesting feature of Figure 11 is that while increasing

the learning rate caused better performance, this was only

true up to ;& - 0.05. When & was increased beyond this,

performance was degraded. Increasing A to 0.10 causpd the

system to become unstable.

10

Leaing P.a z e t
+ 0.01L

9 * 0.03
0 0.05
xx 0.07

e

0

0 0.05 0.1 0.15 0.2 0.25

a - Nonlineazity Coefficient

Figure 11. Variation in W due to Learning Rate

2. BNN Training

One of the advantages of this regulator design is that

there is very little training required in order to achieve
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convergence of the linkweight values. All simulation runs

were completed with a single unit impulse training run. One

of the major drawbacks to the majority of neural network

applications is the amount of training inputs required for

convergence [Ref. 3: p.88]. The apparent reason for this

rapid convergence is that the BNN's are not providing all of

the state vector estimate and control input: they are only

adding a correction to the linear state vector estimate and

the LQR control input.
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IV. CONCLUSIONS

A. SUMNARY

Starting with the rationale for developing an adaptive

regulator for nonlinear systems, the development of a

nonlinear regulator which used backpropagating neural networks

in conjunction with a linear quadratic regulator in an

adaptive control system was proposed. The regulator was

derived and applied to control a representative nonlinear

system.

B. IGM1= IC.ANT RESULTS

Simulations of the BNN-based nonlinear regulator were

conducted on a representative nonlinear system. The main

observations from these simulations are summarized below:

* The results show that the nonlinear regulator works well
in the control of a nonlinear system. It was also seen
that using a LQR on the system works if the nonlinearity
is small.

"* There are many variables involved in the regulator design
which must be optimized by trial and error. Definitive
rules to govern the selection of these variables would
significantly decrease the time to arrive at an
appropriate controller.

"* The amount of training required for the regulator is
minimal. One pulse is sufficient to train the network.

"* This regulator is unproven for all nonlinear systems. Its
utility may be limited to those which may be modeled as a
linear system with an added nonlinear component.
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C. FURTHER RESEARCH

The emphasis in this thesis was to develop a BNN-based

nonlinear regulator that would use the a priori knowledge of

system parameters to find a controller that could function

more efficiently than one which did not utilize this

knowledge. The neural networks used in this research only

contained one hidden layer. While this was sufficient, the

rules used in deriving the BNN's for the regulator could be

used to design neural networks with numerous hidden layers.

Guidelines should be developed which would govern the choice

of the number of layers used in the neural networks, the

number of nodes necessary in the hidden layers, the learning

parameters, and the weighting matrices for the error

functions.
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APPENDIX A: NONLINEAR REGULATOR SIMULATION

A. SYSTEU DERIVATION

A nonlinear regulator using backpropagating neural

networks in conjunction with A linear quadratic regulator was

designed in Section B of Chapter II. This appendix details

the procedure used to arrive at the simulation :-esults of

Chapter II and includes the software written for the research.

The representative nonlinear system chosen for examination

has the continuous domain transfer function:

Y(s) M 10(s-0.1) 10s-1
U(s) (s+1) (s-2)

This equation must be transformed to state space format. This

is accomplished using the derivation shown below [Ref. 1:

p.675-677].

Y(s) - b(s"+bls*- +'"+b,-ls+bJ (A-2)U( S). s.+ al sn-I +...+ an- s + a"

This may be rearranged and transformed to an nth-order system

of linear differential equations:

y(n) +ay (n-l)+...+ay = b0 u ()+b U(-)+...++bnu (A-3)
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where )"^ and u()' are the nth order derivatives of y and u. The

state variable is chosen:

x 1 =y

2 X3 (A-4)

In -a•,•. -a,.x2 ..... -alx,+ bu (B) ÷bl 02- 1) +... ÷bnu.

However, x, - y may not yield a unique solution due to the

derivatives of the forcing function. The state variable are

redefined as

X, - y- POu
X =- k-Po'.-Plu "C.-P.U

X3 = - 2 -P 2u (A-S)

-n. y(A-) 0oU (n-1) PnI =~- nl

where 00, fll, ... , ,f are determined from

p0 = bo
P, bl-alpo

P 2 = b 2 -a 1lp 1 -a 2 Po (A-6)

With this choice of state variables, the following state and

output equations are found:
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=Acx+Bcu (A-7)
y =CcX+Dcu

where

x, o 1 0 ... 0

x 2  0 0 1 ... 0

Ac =
XnI 0 0 0 ... 1

.n X.-a. -an-, -an. 2  .. -a1

P2
c, Cc [(1 0 ... 0], Dcinpobo" (A-8)

Pn-1
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B. SIMULATION SOFTWARE

LQR.M%
%I This program computes a linear quadratic regulator for the
V stated system and simulates the response to a unit
V impulse. No neural network adjustment is provided.
V This is a stand-alone program.
W LT Kurt Menke, 10 June 1992
I

clear; clg
I
I
t The first part of this program converts the system
t from continuous time transfer function to discrete
! domain state space equations.%
%
I The numbers for num and den are for the
t representative system of Chapter III. This is set up
I for a second order system with a single input.
! It may be adapted for any order system using the equations
! in Appendix A.
num - [0 10 -1];
den - [1 -1 -2];%
I
% This transformation to state space follows the
% format of Appendix A.
al - den(l,2);
a2 - den(1,3);
bO - num(l,l);
bl - num(l,2);
b2 - num(1,3);
betaO - bO;
betal - bl - al*betaO;
beta2 - b2 -al*betal -a2*betaO;

3
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% Continuous state space equations
Ac - [ 0 1;

-a2 -all;
Bc - [betal; beta2];
Cc - (1 0];
Dc - betaO;
%
%disp('Sample time for continuous')
dt - input('to discrete conversion? ');%
%
% Discrete state space equations
[A, B] - c2d(Ac,Bc,dt);
I
%

[na,ra] - size(A);
[nb,mb] - size(B);
rand ( 'uniform')
rand('seed', 0)
I%
% Ar, Br, As, and Bs are used to compute the *estimate" of
! A and B used in the computation of the LQR.
t This ensures that Ae and Be are within +/- 10-20%
% of A and B
Ar - 0.1 .* rand(na,ma) + 0.1;
Br - 0.1 .* rand(nb,mb) + 0.1;
I
I
% As and Bs are arbitrary signs which make the particular
W value of Ar/Br either +10-20% or -10-20%
As - C-1 1; 1 -1];
Bs - [-1; 1] ;
Ar - As .* Ar;
Br - Bs .* Br;
I
I
W Ae and Be are the estimates of A and B
Ae - (Ar .* A) + A;
Be - (Br .* B) + B;
I
I
I Weighting matrices
Q- (0 0; 0 11;
R- 1;
I

I Computes the LQR gain matrix (K) and the solution to the
V algebraic Riccati equation (P).
[K,P] - dlqr(Ae,BeQ,R);
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I
I
% e is the coefficient which controls the amount of
W nonlinearity seen by the system.
e - input('Nonlinearity coefficient? ');
%
W% Recommended run time: 10 or 20 seconds.
time - input('Amount of system run time? ');I

W Initial values
Nt - time/dt + 1;
xhat - zeros(na,Nt);
y - zeros(na,Nt) ;
x - zeros (na, Nt) ;
u - [1 zeros(l,Nt-1)]; I Impulse input at time 0.I

for t - 2:Nty(:,t) -A*x(:,t-1) + B*u(:,t-1);
I
V State vector
x(l,t) - y(1,t) + e*(.-exp(y(2,t)));
x(2,t) - y(2,t) + e*(l-exp(y(1,t)));I
V Control inputu(:,t) -- Kx:t;
I
W State vector estimate
xhat(:,t~l) -iAe*x(:,t) + Be*u(:,t);

end;
I

k
% Performance calculation
W1 - 0;
W2 - 0;
for t - 1:Nt

W1 - W1 + abs(x(1,t));
W2 - W2 + abs(x(2,t));

end;
W - W1 + W2;
I

% Plot of state vector response to unit impulse
t-0 :dt : time;
plot(t,x(1,:),t,x(2,:)),grid;
text(0.8,0.8,num2str(W),'sc');
title ('Linear Quadratic Regulator');
xlabel('Time (sec)');
ylabel('System Output');
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% % % % %%%% 2% % %%% %%%%% %% % %%%% % %

NLREG. M
I

t This program computes a nonlinear regulator for the stated
% system and simulates the response to a unit impulse. The
% regulator uses two neural networks: BNNC and BNNM. This
t is a stand-alone program.
t LT Kurt Menke, 10 June 1992
%

clear; clg;
I
I
% The first part of this program converts the system
W from continuous time transfer function to discrete
! domain state space equations.%
I
t The numbers for num and den are for the
t representative system of Chapter III. This is set up
t for a second order system with a single input.
t It may be adapted for any order system using the equations
! in Appendix A.
num - 10 * (0 1 -. 1];
den - conv([1 -21, [1 11);

WI

% This transformation to state space follows the
! format of Appendix A.
al - den(1,2);
a2 - den(1,3);
bO - num(l,1);
bl - num(1,2);
b2 - num(1,3);
betao - bO;
betal - bl - al*betaO;
beta2 - b2 -al*betal -a2*beta0;
I
I

V Continuous state space equations
Ac - ( 0 1;

-a2 -all;
Bc - (betal; beta2l;
Cc - [1 01;
Dc - beta0;

4
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disp('Sample time for continuous')
dt - input('to discrete conversion? ');
W

t Discrete state space equations
[A, B] - c2d(Ac,Bc,dt);
%

[na,ma] - size(A);
[nb,mb] - size(B);
rand('uniform')
rand('seed', 0)%
I
% Ar, Br, As, and Be are used to compute the "estimate" of
t A and B used in the computation of the LQR.
V This ensures that Ae and Be are within +/- 10-20t
! of A and B
Ar - 0.1 .* rand(na,ma) + 0.1;
Br - 0.1 .* rand(nb,mb) + 0.1;%
I
t As and Bs are arbitrary signs which make the particular
V value of Ar/Br either +10-20! or -10-201
As - [-1 1;1 -1];
Bs - [-l;l];
Ar - As .* Ar;
Br - Bes .* Br;%
%

V Ae and Be are the estimates of A and B
Ae - (Ar .* A) + A;
Be - (Br .* B) + B;
%
%
t Weighting matrices
Q- (0 0; 0 1];
R 1;

% Computes the LQR gain matrix (K) and the solution to the
t algebraic Riccati equation (P).
[K,P] - dlqr(Ae,Be,Q,R);
%
%
! Learning rate parameters. LearnM is for BNNM and LearnC
% is for BNNC.
LearnM - 0.05;
LearnC - 0.05;

4
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% e is the coefficient which controls the amount of
% nonlinearity seen by the system.
e - input('Nonlinearity coefficient? ');

V%

% Recommended run time: 10 or 20 seconds.
time - input('Amount of system run time? ');%
%
disp('Number of nodes in hidden layer')
Nm - input('of modeling net (BNNM)? ');%
I
disp('Number of nodes in hidden layer')
Nc - input('of control net (BNNC)? ');%
I
% Initialization of the linkweight matrices
[al,a2] - netinitm(na,Nm,na+2);
Ebl,b2] - netinitm(mb,Nc,nb+l);

% Bias value for neural networks
Bias - 1;
%

W Initial values
Nt - time/dt + 1;
x - zeros (na, Nt);
y - zeros(na,Nt);
xbar - zeros (na,Nt+l);
xhat - zeros(na,Nt+l);
xdel - zeros(na,Nt+l);
ex - zeros (na,Nt) ;
u M [I zeros(mb,Nt-1)]; V Impulse input at time 0I

! Training run
for t - 2:Nt

y(:,t) -A*x(:,t-1) + B*u(:,t-1);
% State vector
x(1,t) - y(l,t) + e*(l-exp(y(2,t)));
x(2,t) - y(2,t) + e*(1-exp(y(l,t)));
W Error vector
ex(: ,t) - x(:,t) -xhat (: ,t) ;
t Training of linkweights for BNNM
(al,a2] - bpm(al,a2,[x(:,t);u(:,t);Bias],ex(:,t),Learnm);
% Linear control input
ubar(:,t) = -K*x(:,t);
% BNNC output
udel(:,t) =netm((x(:,t); Bias], bl, b2);
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%Control input
u(:,t) -ubar(:,t) + udel(:,t);
W Linear state vector estimate
xbar(:,t+l) -Ae*x(:,t) + Be*u(:,t);
W BNNM output
xdel(:,t+l) - netm([x(:,t); u(:,t); Bias], al, a2);
W State vector estimate
xhat(:,t+l) - xbar(:,t~l) + xdel(:,t+l);
* Training of linkweights f or BNNC
[bl,b21 -bpc(al,a2,bl,b2,x(:,t),u(:,t),xhat(:,t+l),...

Bias, P, Be, R, Learn) ;
end;
W

W Resetting initial values
x - zeros(na,Nt);
y - zeros(na,Nt);
xbar - zeros(na,Nt+l);
xhat - zeros(na,Nt+l);
xdel - zeros(na,Nti-l);
ex - zeros(na,Nt);
ubar - zeros (mb, Nt) ;
udel - zeros(mb,Nt);
U - (1. zeros(mb,Nt-1)]; IImpulse input at time 0

V Simulation run
for t - 2:Nt

* State vector
x(l1t) - y(l,t) + e*(l-exp(y(2,t)));.
x(2,t) - y(2,t) + e*(1-exp(y(l,t)));
V Error vector

t Training of linkweights for BNNM
(al,a2] - bpm(al,a2,[x(:,t);u(:,t);Bias],ex(:,t),Lear~n);
t Linear control input
ubar(:,t) M-K~(,)
%, BNNC output
udel(:,t) - netm([x(:,t); Bias], bi, b2);
% Control input
u(:,t) - ubar(:,t) + udel(:,t);
% Linear state vector estimate
xbar(:,t~l) - Ae*x(:,t) + Be*u(:,t);
V BNNM output
xdel(:,t+l) - netm([x(:,t); u(:,t); Bias], al, a2);
% State vector estimate
xhat(:,t+l) = xbar(:,t+l) + xdel(:,ti-1)*;
% Training of linkweights for BNNC
(bl,b2] p~laib,(,)u:tht:tl,.

Bias ,P, Be, R, Learn) ;
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end;W

% Performance calculation
W1 - 0;
W2 - 0;
for t - 1:Nt

W1 - WI + abs(x(1,t));
W2 - W2 + abs(x(2,t));

end;
W - W1 + W2;
I

t Plot of state vector response to unit impulse
t-O:dt:time;
plot(t,x(1, :) ,t,x(2,:)) ,grid;
text (0.8,0.8,num2str (W), 'sc');

title (I'Linear Quadratic Regulator');
xlabel ('Time (sec)');
ylabel('System Output');
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The following programs are the subroutines required to run
LQR.M and NLREG.M.

function [al,a2] - netinitm(ny,M,nu)

% Routine for initializing the neural net with
% small random numbers.

I Function call: tal,a2] - netinitm(ny,M,nu)

I where ny - number of outputs
I M - number of nodes in the hidden layer

W nu - number of inputs

% LT Kurt Menke, 10 June 1992

rand( 'normal')
rand (Iseed' , 0)
al - O.1*rand(M,nu);
a2 - 0. 1* rand (ny, M)
return

function x3 - netm(xl,al,a2)

IRoutine for calculating the output of a neural net.

I Function call: x3 - net (xl,al,a2)

I where xl - neural net input vector
I al - linkweight matrix from input to hidden layer

V a2 - linkweight matrix from hidden layer to output

%, LT Kurt Menke, 10 June 1992

x2 - sigmoid(al*xl);
x3 - a2*x2;
return
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function y - sigmoid(x)W
%~ Routine for calculating the sigmoid of a vector input

% Function call: y - sigmoid(x)W
% where x - vector input

y - vector output

% LT Kurt Menke, 10 June 1992

y - 1 ./ (1+exp(-x));
return

function y - dsig(x)W
% Routine for calculating the first derivative of the
V sigmoid of a vector input
%
V Function call: y - dsig(x)%
t where x - vector input
I y - vector output

I LT Kurt Menke, 10 June 1992

temp - exp(-x);
y - temp./ (1 + 2*temp + temp.*temp);
return;
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function [al,a2] - bpm(al,a2,xl,ex,mu)W
% Routine for updating the linkweight matrices for BNNM.
%
% Function call: (al,a2] = bpm(al,a2,xlex,mu)

* .1%
% where al = linkweight matrix from input to hidden layer
% a2 - linkweight matrix from hidden layer to output
Sxl - neural net input vector

% ex - error vector for linkweight adjustment
V mu - learning rate for BNNM
%
% LT Kurt Menke, 10 June 1992
%
z2 - al*xl;
x2 - sigmoid(z2);
z3 - a2*x2;
%
parE_al - -diag(dsig(z2))*a2'*ex*xl';
parEa2 - -ex*x2';

al - al - mu.*parE-al;
a2 - a2 - mu.*parEa2;
return
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function [bl,b2] = bpc(al,a2,bl,b2,x,u,xhat,Bias,P,B,R,mu)

% Routine for updating the linkweight matrices for BNNC.

% Function call: [bl,b2] = bpm(al,a2,bl,b2.,x,u,xhat,...
W Bias, P, B, R,mu)
%-
V where al - BNNM linkweights from input to hidden layer
I a2 - BNNM linkweights from hidden layer to output
% x - neural net input vector
% u - control input
% xhat - state vector estimate
W Bias - bias value for neural net
% P - matrix solution to algebraic Riccati equation
% B - system input matri.x
I R - weighting factor
% mu - learning rate for BNNC
W
W LT Kurt Menke, 10 June 1992
t
xla - Ex; u; Bias];
z2a - al*xla;
x2a - sigmoid(z2a);
z3a - a2*x2a;

xlb - [x; Bias];
z2b - bl*xlb;
x2b - sigmoid(z2b);
z3b . b2*x2b;
t
parhb2 - x2b';
parh_bi - diag(dsig(z2b))*b2'*xlb';
W
della - a2*diag(dsig(z2a));
parg-h - della*(sum(al'))' ;
parEc - xhat'*P*(B+parg-h) + u'*R;
%I
deb2 - parE_c.*parh-b2;
debl - parE_c.*parh-bl;
I
bl - bl - mu.*debl;
b2 = b2 - mu.*deb2;
return
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